Support Warning

WebGPU is currently only supported on Chrome starting with version 113, and only on desktop. If they don't work on your configuration, you can check the WebGL2 examples here.

custom_shader_instancing.rs:
//! A shader that renders a mesh multiple times in one draw call.
//!
//! Bevy will automatically batch and instance your meshes assuming you use the same
//! `Handle<Material>` and `Handle<Mesh>` for all of your instances.
//!
//! This example is intended for advanced users and shows how to make a custom instancing
//! implementation using bevy's low level rendering api.
//! It's generally recommended to try the built-in instancing before going with this approach.

use bevy::{
    core_pipeline::core_3d::Transparent3d,
    ecs::{
        query::QueryItem,
        system::{lifetimeless::*, SystemParamItem},
    },
    pbr::{
        MeshPipeline, MeshPipelineKey, RenderMeshInstances, SetMeshBindGroup, SetMeshViewBindGroup,
    },
    prelude::*,
    render::{
        extract_component::{ExtractComponent, ExtractComponentPlugin},
        mesh::{
            allocator::MeshAllocator, MeshVertexBufferLayoutRef, RenderMesh, RenderMeshBufferInfo,
        },
        render_asset::RenderAssets,
        render_phase::{
            AddRenderCommand, DrawFunctions, PhaseItem, PhaseItemExtraIndex, RenderCommand,
            RenderCommandResult, SetItemPipeline, TrackedRenderPass, ViewSortedRenderPhases,
        },
        render_resource::*,
        renderer::RenderDevice,
        sync_world::MainEntity,
        view::{ExtractedView, NoFrustumCulling},
        Render, RenderApp, RenderSet,
    },
};
use bytemuck::{Pod, Zeroable};

/// This example uses a shader source file from the assets subdirectory
const SHADER_ASSET_PATH: &str = "shaders/instancing.wgsl";

fn main() {
    App::new()
        .add_plugins((DefaultPlugins, CustomMaterialPlugin))
        .add_systems(Startup, setup)
        .run();
}

fn setup(mut commands: Commands, mut meshes: ResMut<Assets<Mesh>>) {
    commands.spawn((
        Mesh3d(meshes.add(Cuboid::new(0.5, 0.5, 0.5))),
        InstanceMaterialData(
            (1..=10)
                .flat_map(|x| (1..=10).map(move |y| (x as f32 / 10.0, y as f32 / 10.0)))
                .map(|(x, y)| InstanceData {
                    position: Vec3::new(x * 10.0 - 5.0, y * 10.0 - 5.0, 0.0),
                    scale: 1.0,
                    color: LinearRgba::from(Color::hsla(x * 360., y, 0.5, 1.0)).to_f32_array(),
                })
                .collect(),
        ),
        // NOTE: Frustum culling is done based on the Aabb of the Mesh and the GlobalTransform.
        // As the cube is at the origin, if its Aabb moves outside the view frustum, all the
        // instanced cubes will be culled.
        // The InstanceMaterialData contains the 'GlobalTransform' information for this custom
        // instancing, and that is not taken into account with the built-in frustum culling.
        // We must disable the built-in frustum culling by adding the `NoFrustumCulling` marker
        // component to avoid incorrect culling.
        NoFrustumCulling,
    ));

    // camera
    commands.spawn((
        Camera3d::default(),
        Transform::from_xyz(0.0, 0.0, 15.0).looking_at(Vec3::ZERO, Vec3::Y),
    ));
}

#[derive(Component, Deref)]
struct InstanceMaterialData(Vec<InstanceData>);

impl ExtractComponent for InstanceMaterialData {
    type QueryData = &'static InstanceMaterialData;
    type QueryFilter = ();
    type Out = Self;

    fn extract_component(item: QueryItem<'_, Self::QueryData>) -> Option<Self> {
        Some(InstanceMaterialData(item.0.clone()))
    }
}

struct CustomMaterialPlugin;

impl Plugin for CustomMaterialPlugin {
    fn build(&self, app: &mut App) {
        app.add_plugins(ExtractComponentPlugin::<InstanceMaterialData>::default());
        app.sub_app_mut(RenderApp)
            .add_render_command::<Transparent3d, DrawCustom>()
            .init_resource::<SpecializedMeshPipelines<CustomPipeline>>()
            .add_systems(
                Render,
                (
                    queue_custom.in_set(RenderSet::QueueMeshes),
                    prepare_instance_buffers.in_set(RenderSet::PrepareResources),
                ),
            );
    }

    fn finish(&self, app: &mut App) {
        app.sub_app_mut(RenderApp).init_resource::<CustomPipeline>();
    }
}

#[derive(Clone, Copy, Pod, Zeroable)]
#[repr(C)]
struct InstanceData {
    position: Vec3,
    scale: f32,
    color: [f32; 4],
}

#[allow(clippy::too_many_arguments)]
fn queue_custom(
    transparent_3d_draw_functions: Res<DrawFunctions<Transparent3d>>,
    custom_pipeline: Res<CustomPipeline>,
    mut pipelines: ResMut<SpecializedMeshPipelines<CustomPipeline>>,
    pipeline_cache: Res<PipelineCache>,
    meshes: Res<RenderAssets<RenderMesh>>,
    render_mesh_instances: Res<RenderMeshInstances>,
    material_meshes: Query<(Entity, &MainEntity), With<InstanceMaterialData>>,
    mut transparent_render_phases: ResMut<ViewSortedRenderPhases<Transparent3d>>,
    views: Query<(Entity, &ExtractedView, &Msaa)>,
) {
    let draw_custom = transparent_3d_draw_functions.read().id::<DrawCustom>();

    for (view_entity, view, msaa) in &views {
        let Some(transparent_phase) = transparent_render_phases.get_mut(&view_entity) else {
            continue;
        };

        let msaa_key = MeshPipelineKey::from_msaa_samples(msaa.samples());

        let view_key = msaa_key | MeshPipelineKey::from_hdr(view.hdr);
        let rangefinder = view.rangefinder3d();
        for (entity, main_entity) in &material_meshes {
            let Some(mesh_instance) = render_mesh_instances.render_mesh_queue_data(*main_entity)
            else {
                continue;
            };
            let Some(mesh) = meshes.get(mesh_instance.mesh_asset_id) else {
                continue;
            };
            let key =
                view_key | MeshPipelineKey::from_primitive_topology(mesh.primitive_topology());
            let pipeline = pipelines
                .specialize(&pipeline_cache, &custom_pipeline, key, &mesh.layout)
                .unwrap();
            transparent_phase.add(Transparent3d {
                entity: (entity, *main_entity),
                pipeline,
                draw_function: draw_custom,
                distance: rangefinder.distance_translation(&mesh_instance.translation),
                batch_range: 0..1,
                extra_index: PhaseItemExtraIndex::NONE,
            });
        }
    }
}

#[derive(Component)]
struct InstanceBuffer {
    buffer: Buffer,
    length: usize,
}

fn prepare_instance_buffers(
    mut commands: Commands,
    query: Query<(Entity, &InstanceMaterialData)>,
    render_device: Res<RenderDevice>,
) {
    for (entity, instance_data) in &query {
        let buffer = render_device.create_buffer_with_data(&BufferInitDescriptor {
            label: Some("instance data buffer"),
            contents: bytemuck::cast_slice(instance_data.as_slice()),
            usage: BufferUsages::VERTEX | BufferUsages::COPY_DST,
        });
        commands.entity(entity).insert(InstanceBuffer {
            buffer,
            length: instance_data.len(),
        });
    }
}

#[derive(Resource)]
struct CustomPipeline {
    shader: Handle<Shader>,
    mesh_pipeline: MeshPipeline,
}

impl FromWorld for CustomPipeline {
    fn from_world(world: &mut World) -> Self {
        let mesh_pipeline = world.resource::<MeshPipeline>();

        CustomPipeline {
            shader: world.load_asset(SHADER_ASSET_PATH),
            mesh_pipeline: mesh_pipeline.clone(),
        }
    }
}

impl SpecializedMeshPipeline for CustomPipeline {
    type Key = MeshPipelineKey;

    fn specialize(
        &self,
        key: Self::Key,
        layout: &MeshVertexBufferLayoutRef,
    ) -> Result<RenderPipelineDescriptor, SpecializedMeshPipelineError> {
        let mut descriptor = self.mesh_pipeline.specialize(key, layout)?;

        descriptor.vertex.shader = self.shader.clone();
        descriptor.vertex.buffers.push(VertexBufferLayout {
            array_stride: size_of::<InstanceData>() as u64,
            step_mode: VertexStepMode::Instance,
            attributes: vec![
                VertexAttribute {
                    format: VertexFormat::Float32x4,
                    offset: 0,
                    shader_location: 3, // shader locations 0-2 are taken up by Position, Normal and UV attributes
                },
                VertexAttribute {
                    format: VertexFormat::Float32x4,
                    offset: VertexFormat::Float32x4.size(),
                    shader_location: 4,
                },
            ],
        });
        descriptor.fragment.as_mut().unwrap().shader = self.shader.clone();
        Ok(descriptor)
    }
}

type DrawCustom = (
    SetItemPipeline,
    SetMeshViewBindGroup<0>,
    SetMeshBindGroup<1>,
    DrawMeshInstanced,
);

struct DrawMeshInstanced;

impl<P: PhaseItem> RenderCommand<P> for DrawMeshInstanced {
    type Param = (
        SRes<RenderAssets<RenderMesh>>,
        SRes<RenderMeshInstances>,
        SRes<MeshAllocator>,
    );
    type ViewQuery = ();
    type ItemQuery = Read<InstanceBuffer>;

    #[inline]
    fn render<'w>(
        item: &P,
        _view: (),
        instance_buffer: Option<&'w InstanceBuffer>,
        (meshes, render_mesh_instances, mesh_allocator): SystemParamItem<'w, '_, Self::Param>,
        pass: &mut TrackedRenderPass<'w>,
    ) -> RenderCommandResult {
        // A borrow check workaround.
        let mesh_allocator = mesh_allocator.into_inner();

        let Some(mesh_instance) = render_mesh_instances.render_mesh_queue_data(item.main_entity())
        else {
            return RenderCommandResult::Skip;
        };
        let Some(gpu_mesh) = meshes.into_inner().get(mesh_instance.mesh_asset_id) else {
            return RenderCommandResult::Skip;
        };
        let Some(instance_buffer) = instance_buffer else {
            return RenderCommandResult::Skip;
        };
        let Some(vertex_buffer_slice) =
            mesh_allocator.mesh_vertex_slice(&mesh_instance.mesh_asset_id)
        else {
            return RenderCommandResult::Skip;
        };

        pass.set_vertex_buffer(0, vertex_buffer_slice.buffer.slice(..));
        pass.set_vertex_buffer(1, instance_buffer.buffer.slice(..));

        match &gpu_mesh.buffer_info {
            RenderMeshBufferInfo::Indexed {
                index_format,
                count,
            } => {
                let Some(index_buffer_slice) =
                    mesh_allocator.mesh_index_slice(&mesh_instance.mesh_asset_id)
                else {
                    return RenderCommandResult::Skip;
                };

                pass.set_index_buffer(index_buffer_slice.buffer.slice(..), 0, *index_format);
                pass.draw_indexed(
                    index_buffer_slice.range.start..(index_buffer_slice.range.start + count),
                    vertex_buffer_slice.range.start as i32,
                    0..instance_buffer.length as u32,
                );
            }
            RenderMeshBufferInfo::NonIndexed => {
                pass.draw(vertex_buffer_slice.range, 0..instance_buffer.length as u32);
            }
        }
        RenderCommandResult::Success
    }
}
shaders/instancing.wgsl:
#import bevy_pbr::mesh_functions::{get_world_from_local, mesh_position_local_to_clip}

struct Vertex {
    @location(0) position: vec3<f32>,
    @location(1) normal: vec3<f32>,
    @location(2) uv: vec2<f32>,

    @location(3) i_pos_scale: vec4<f32>,
    @location(4) i_color: vec4<f32>,
};

struct VertexOutput {
    @builtin(position) clip_position: vec4<f32>,
    @location(0) color: vec4<f32>,
};

@vertex
fn vertex(vertex: Vertex) -> VertexOutput {
    let position = vertex.position * vertex.i_pos_scale.w + vertex.i_pos_scale.xyz;
    var out: VertexOutput;
    // NOTE: Passing 0 as the instance_index to get_world_from_local() is a hack
    // for this example as the instance_index builtin would map to the wrong
    // index in the Mesh array. This index could be passed in via another
    // uniform instead but it's unnecessary for the example.
    out.clip_position = mesh_position_local_to_clip(
        get_world_from_local(0u),
        vec4<f32>(position, 1.0)
    );
    out.color = vertex.i_color;
    return out;
}

@fragment
fn fragment(in: VertexOutput) -> @location(0) vec4<f32> {
    return in.color;
}