Stress Tests / Many Lights

Back to examples View in GitHub

Support Warning

WebGPU is currently only supported on Chrome starting with version 113, and only on desktop. If they don't work on your configuration, you can check the WebGL2 examples here.

//! Simple benchmark to test rendering many point lights.
//! Run with `WGPU_SETTINGS_PRIO=webgl2` to restrict to uniform buffers and max 256 lights.

use std::f64::consts::PI;

use bevy::{
    color::palettes::css::DEEP_PINK,
    diagnostic::{FrameTimeDiagnosticsPlugin, LogDiagnosticsPlugin},
    math::{DVec2, DVec3},
    pbr::{ExtractedPointLight, GlobalClusterableObjectMeta},
    prelude::*,
    render::{camera::ScalingMode, Render, RenderApp, RenderSet},
    window::{PresentMode, WindowResolution},
    winit::{UpdateMode, WinitSettings},
};
use rand::{thread_rng, Rng};

fn main() {
    App::new()
        .add_plugins((
            DefaultPlugins.set(WindowPlugin {
                primary_window: Some(Window {
                    resolution: WindowResolution::new(1920.0, 1080.0)
                        .with_scale_factor_override(1.0),
                    title: "many_lights".into(),
                    present_mode: PresentMode::AutoNoVsync,
                    ..default()
                }),
                ..default()
            }),
            FrameTimeDiagnosticsPlugin,
            LogDiagnosticsPlugin::default(),
            LogVisibleLights,
        ))
        .insert_resource(WinitSettings {
            focused_mode: UpdateMode::Continuous,
            unfocused_mode: UpdateMode::Continuous,
        })
        .add_systems(Startup, setup)
        .add_systems(Update, (move_camera, print_light_count))
        .run();
}

fn setup(
    mut commands: Commands,
    mut meshes: ResMut<Assets<Mesh>>,
    mut materials: ResMut<Assets<StandardMaterial>>,
) {
    warn!(include_str!("warning_string.txt"));

    const LIGHT_RADIUS: f32 = 0.3;
    const LIGHT_INTENSITY: f32 = 1000.0;
    const RADIUS: f32 = 50.0;
    const N_LIGHTS: usize = 100_000;

    commands.spawn((
        Mesh3d(meshes.add(Sphere::new(RADIUS).mesh().ico(9).unwrap())),
        MeshMaterial3d(materials.add(Color::WHITE)),
        Transform::from_scale(Vec3::NEG_ONE),
    ));

    let mesh = meshes.add(Cuboid::default());
    let material = materials.add(StandardMaterial {
        base_color: DEEP_PINK.into(),
        ..default()
    });

    // NOTE: This pattern is good for testing performance of culling as it provides roughly
    // the same number of visible meshes regardless of the viewing angle.
    // NOTE: f64 is used to avoid precision issues that produce visual artifacts in the distribution
    let golden_ratio = 0.5f64 * (1.0f64 + 5.0f64.sqrt());

    // Spawn N_LIGHTS many lights
    commands.spawn_batch((0..N_LIGHTS).map(move |i| {
        let mut rng = thread_rng();

        let spherical_polar_theta_phi = fibonacci_spiral_on_sphere(golden_ratio, i, N_LIGHTS);
        let unit_sphere_p = spherical_polar_to_cartesian(spherical_polar_theta_phi);

        (
            PointLight {
                range: LIGHT_RADIUS,
                intensity: LIGHT_INTENSITY,
                color: Color::hsl(rng.gen_range(0.0..360.0), 1.0, 0.5),
                ..default()
            },
            Transform::from_translation((RADIUS as f64 * unit_sphere_p).as_vec3()),
        )
    }));

    // camera
    match std::env::args().nth(1).as_deref() {
        Some("orthographic") => commands.spawn((
            Camera3d::default(),
            Projection::from(OrthographicProjection {
                scaling_mode: ScalingMode::FixedHorizontal {
                    viewport_width: 20.0,
                },
                ..OrthographicProjection::default_3d()
            }),
        )),
        _ => commands.spawn(Camera3d::default()),
    };

    // add one cube, the only one with strong handles
    // also serves as a reference point during rotation
    commands.spawn((
        Mesh3d(mesh),
        MeshMaterial3d(material),
        Transform {
            translation: Vec3::new(0.0, RADIUS, 0.0),
            scale: Vec3::splat(5.0),
            ..default()
        },
    ));
}

// NOTE: This epsilon value is apparently optimal for optimizing for the average
// nearest-neighbor distance. See:
// http://extremelearning.com.au/how-to-evenly-distribute-points-on-a-sphere-more-effectively-than-the-canonical-fibonacci-lattice/
// for details.
const EPSILON: f64 = 0.36;
fn fibonacci_spiral_on_sphere(golden_ratio: f64, i: usize, n: usize) -> DVec2 {
    DVec2::new(
        PI * 2. * (i as f64 / golden_ratio),
        ops::acos((1.0 - 2.0 * (i as f64 + EPSILON) / (n as f64 - 1.0 + 2.0 * EPSILON)) as f32)
            as f64,
    )
}

fn spherical_polar_to_cartesian(p: DVec2) -> DVec3 {
    let (sin_theta, cos_theta) = p.x.sin_cos();
    let (sin_phi, cos_phi) = p.y.sin_cos();
    DVec3::new(cos_theta * sin_phi, sin_theta * sin_phi, cos_phi)
}

// System for rotating the camera
fn move_camera(time: Res<Time>, mut camera_transform: Single<&mut Transform, With<Camera>>) {
    let delta = time.delta_secs() * 0.15;
    camera_transform.rotate_z(delta);
    camera_transform.rotate_x(delta);
}

// System for printing the number of meshes on every tick of the timer
fn print_light_count(time: Res<Time>, mut timer: Local<PrintingTimer>, lights: Query<&PointLight>) {
    timer.0.tick(time.delta());

    if timer.0.just_finished() {
        info!("Lights: {}", lights.iter().len());
    }
}

struct LogVisibleLights;

impl Plugin for LogVisibleLights {
    fn build(&self, app: &mut App) {
        let Some(render_app) = app.get_sub_app_mut(RenderApp) else {
            return;
        };

        render_app.add_systems(Render, print_visible_light_count.in_set(RenderSet::Prepare));
    }
}

// System for printing the number of meshes on every tick of the timer
fn print_visible_light_count(
    time: Res<Time>,
    mut timer: Local<PrintingTimer>,
    visible: Query<&ExtractedPointLight>,
    global_light_meta: Res<GlobalClusterableObjectMeta>,
) {
    timer.0.tick(time.delta());

    if timer.0.just_finished() {
        info!(
            "Visible Lights: {}, Rendered Lights: {}",
            visible.iter().len(),
            global_light_meta.entity_to_index.len()
        );
    }
}

struct PrintingTimer(Timer);

impl Default for PrintingTimer {
    fn default() -> Self {
        Self(Timer::from_seconds(1.0, TimerMode::Repeating))
    }
}