This example is running in WebGL2 and should work in most browsers. You can check the WebGPU examples here.
//! Demonstrates rotating entities in 2D using quaternions.
use ;
const BOUNDS: Vec2 = new;
/// player component
/// snap to player ship behavior
;
/// rotate to face player ship behavior
/// Add the game's entities to our world and creates an orthographic camera for 2D rendering.
///
/// The Bevy coordinate system is the same for 2D and 3D, in terms of 2D this means that:
///
/// * `X` axis goes from left to right (`+X` points right)
/// * `Y` axis goes from bottom to top (`+Y` point up)
/// * `Z` axis goes from far to near (`+Z` points towards you, out of the screen)
///
/// The origin is at the center of the screen.
/// Demonstrates applying rotation and movement based on keyboard input.
/// Demonstrates snapping the enemy ship to face the player ship immediately.
/// Demonstrates rotating an enemy ship to face the player ship at a given rotation speed.
///
/// This method uses the vector dot product to determine if the enemy is facing the player and
/// if not, which way to rotate to face the player. The dot product on two unit length vectors
/// will return a value between -1.0 and +1.0 which tells us the following about the two vectors:
///
/// * If the result is 1.0 the vectors are pointing in the same direction, the angle between them is
/// 0 degrees.
/// * If the result is 0.0 the vectors are perpendicular, the angle between them is 90 degrees.
/// * If the result is -1.0 the vectors are parallel but pointing in opposite directions, the angle
/// between them is 180 degrees.
/// * If the result is positive the vectors are pointing in roughly the same direction, the angle
/// between them is greater than 0 and less than 90 degrees.
/// * If the result is negative the vectors are pointing in roughly opposite directions, the angle
/// between them is greater than 90 and less than 180 degrees.
///
/// It is possible to get the angle by taking the arc cosine (`acos`) of the dot product. It is
/// often unnecessary to do this though. Beware than `acos` will return `NaN` if the input is less
/// than -1.0 or greater than 1.0. This can happen even when working with unit vectors due to
/// floating point precision loss, so it pays to clamp your dot product value before calling
/// `acos`.