Shaders / Storage Buffer

Back to examples View in GitHub
This example is running in WebGL2 and should work in most browsers. You can check the WebGPU examples here.

//! This example demonstrates how to use a storage buffer with `AsBindGroup` in a custom material.
use bevy::{
    prelude::*,
    reflect::TypePath,
    render::{
        render_resource::{AsBindGroup, ShaderRef},
        storage::ShaderStorageBuffer,
    },
};

const SHADER_ASSET_PATH: &str = "shaders/storage_buffer.wgsl";

fn main() {
    App::new()
        .add_plugins((DefaultPlugins, MaterialPlugin::<CustomMaterial>::default()))
        .add_systems(Startup, setup)
        .add_systems(Update, update)
        .run();
}

/// set up a simple 3D scene
fn setup(
    mut commands: Commands,
    mut meshes: ResMut<Assets<Mesh>>,
    mut buffers: ResMut<Assets<ShaderStorageBuffer>>,
    mut materials: ResMut<Assets<CustomMaterial>>,
) {
    // Example data for the storage buffer
    let color_data: Vec<[f32; 4]> = vec![
        [1.0, 0.0, 0.0, 1.0],
        [0.0, 1.0, 0.0, 1.0],
        [0.0, 0.0, 1.0, 1.0],
        [1.0, 1.0, 0.0, 1.0],
        [0.0, 1.0, 1.0, 1.0],
    ];

    let colors = buffers.add(ShaderStorageBuffer::from(color_data));

    // Create the custom material with the storage buffer
    let custom_material = CustomMaterial { colors };

    let material_handle = materials.add(custom_material);
    commands.insert_resource(CustomMaterialHandle(material_handle.clone()));

    // Spawn cubes with the custom material
    for i in -6..=6 {
        for j in -3..=3 {
            commands.spawn((
                Mesh3d(meshes.add(Cuboid::from_size(Vec3::splat(0.3)))),
                MeshMaterial3d(material_handle.clone()),
                Transform::from_xyz(i as f32, j as f32, 0.0),
            ));
        }
    }

    // Camera
    commands.spawn((
        Camera3d::default(),
        Transform::from_xyz(0.0, 0.0, 10.0).looking_at(Vec3::ZERO, Vec3::Y),
    ));
}

// Update the material color by time
fn update(
    time: Res<Time>,
    material_handle: Res<CustomMaterialHandle>,
    mut materials: ResMut<Assets<CustomMaterial>>,
    mut buffers: ResMut<Assets<ShaderStorageBuffer>>,
) {
    let material = materials.get_mut(&material_handle.0).unwrap();
    let buffer = buffers.get_mut(&material.colors).unwrap();
    buffer.set_data(
        (0..5)
            .map(|i| {
                let t = time.elapsed_secs() * 5.0;
                [
                    ops::sin(t + i as f32) / 2.0 + 0.5,
                    ops::sin(t + i as f32 + 2.0) / 2.0 + 0.5,
                    ops::sin(t + i as f32 + 4.0) / 2.0 + 0.5,
                    1.0,
                ]
            })
            .collect::<Vec<[f32; 4]>>()
            .as_slice(),
    );
}

// Holds a handle to the custom material
#[derive(Resource)]
struct CustomMaterialHandle(Handle<CustomMaterial>);

// This struct defines the data that will be passed to your shader
#[derive(Asset, TypePath, AsBindGroup, Debug, Clone)]
struct CustomMaterial {
    #[storage(0, read_only)]
    colors: Handle<ShaderStorageBuffer>,
}

impl Material for CustomMaterial {
    fn vertex_shader() -> ShaderRef {
        SHADER_ASSET_PATH.into()
    }

    fn fragment_shader() -> ShaderRef {
        SHADER_ASSET_PATH.into()
    }
}
#import bevy_pbr::{
    mesh_functions,
    view_transformations::position_world_to_clip
}

@group(2) @binding(0) var<storage, read> colors: array<vec4<f32>, 5>;

struct Vertex {
    @builtin(instance_index) instance_index: u32,
    @location(0) position: vec3<f32>,
};

struct VertexOutput {
    @builtin(position) clip_position: vec4<f32>,
    @location(0) world_position: vec4<f32>,
    @location(1) color: vec4<f32>,
};

@vertex
fn vertex(vertex: Vertex) -> VertexOutput {
    var out: VertexOutput;
    var world_from_local = mesh_functions::get_world_from_local(vertex.instance_index);
    out.world_position = mesh_functions::mesh_position_local_to_world(world_from_local, vec4(vertex.position, 1.0));
    out.clip_position = position_world_to_clip(out.world_position.xyz);

    // We have 5 colors in the storage buffer, but potentially many instances of the mesh, so
    // we use the instance index to select a color from the storage buffer.
    out.color = colors[vertex.instance_index % 5];

    return out;
}

@fragment
fn fragment(
    mesh: VertexOutput,
) -> @location(0) vec4<f32> {
    return mesh.color;
}```